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Abstract. A Building Block Filtering Genetic Algorithm(bbf-GA) is proposed 
which introduces building block candidates filtering and exploiting to improve 
traditional GA. Various recognition functions are designed and tested by ana-
lyzing the features of building blocks during the evolution of GA search for 
symmetrical TSP, and one of them is adopted to filter building block candidates. 
A position representation for TSP and relevant bbf-based genetic operators are 
designed to exploit the building block candidates. The proposed TSP special-
ized position representation can decrease the computational workload of bbf-
GA, such as edge comparison, computation of individual similarity, abstraction 
of uniform edge, and operations in bbf-based genetic operators. Experimental 
results show that comparing with traditional GA, Building Block Filtering Ge-
netic Algorithm can improve the efficiency of search remarkably by reducing 
unnecessary search in GA. 

1   Introduction 

The GA’s search strategy is commonly described by the pattern theorem and building 
block hypothesis. The building block hypothesis (Holland1975; Goldbery 1989) [1] 

states that the GA works well when short, low-order, highly-fit schemas recombine to 
form even more highly fit higher-order schemas. The ability to produce fitter and 
fitter partial solutions by combining building blocks is believed to be the primary 
source of the GA’s search power, thus improving the ability of GA to exploit known 
building blocks in limited populations and to explore new building blocks at the same 
time is essential to improve the search of GA.  

Numerous researchers have studied on defining and exploiting building block. For-
est and Mitchell[2] designed a class of fitness landscapes ( the “Royal Road” function) 
to measure the effects of genetic operators on building block in binary encoding 
mechanism. Wu et al. [3]  compared two different GA representation schemes with a 
floating representation scheme and examine the differences in building block dynam-
ics. Kemenade[4] compared and identified building block by calculating the difference 
of the fitness value caused by the change of allele in binary coding, and utilized it in 
the proposed three-stage GA.   

Zhou peng et al. [5] applied reduction mechanism to find uniform partial solutions 
from local optimal solutions generated by heuristic method, then reduced the scale of 
the instance by multi-reduction algorithm, finally the solution of the original problem 
could be reverted after iterative operations. Schneider et al. [6]  proposed an efficient 
parallel method to reduce the instance of TSP to a smaller one by finding backbones 
which are actual uniform partial solutions from local optimal solutions and eliminat-
ing them from original problem to get even better solutions in a very short time and a 
few observables of interest corresponding to this parallel approach. 

These research works inspire us to find the way to guide the search of GA by filter-
ing building block from similar parts among populations. In this paper, the search of 
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instance of symmetrical Traveling Salesman Problem (TSP) is used to evaluate vari-
ous recognition mechanisms, and one of them is adopted and a Building Block Filter-
ing Genetic Algorithm (bbf-GA) is proposed.  The structure of this paper is as fol-
lows. In next Section we introduce the chromosome representation for TSP (position 
representation) that we proposed, as well as compare and analyse various 
recogniztion functions and their filtering results. After that, the bbf-GA is described 
detailed in Section 3 and experimental results are presented in Sections 4. Finally, 
conclusions come in Section 5. 

2   Recognition of Building Block 

The Traveling Salesman Problem has been in the focus of studies for many years. In 
order to investigate the features of building block during the typical evaluation of a 
GA search, several testing instances in TSPLIB[7] are chosen.  

As to TSP, Building blocks can be taken as the “best” edges. For a certain node, 
the “best” edge is not the shortest edge that takes it as vertex (greedy algorithm can 
hardly find the optimal solution), but the edge that synthesized with other “best” edge 
to make the shortest full-path. Thus, it is impossible to determine an edge is good or 
not just by the comparison of edges’ length. Calculating the difference of the full-path 
length when the connected edge of a vertex is changing could identify best edges. 
However, the computational work of this is as hard as that of the solution search itself. 

In the first place, we use traditional GA to solve TSP. The known optimal solution 
is inputted at the beginning of algorithm and all edges in the solution are taken as 
“best” edges, which are the building blocks. Then we look into the distribution and 
change of building blocks in each individual during running process of algorithm to 
find the way to filter building blocks. In order to improve the calculating efficiency, 
position representation is designed. 

2.1 Position Representation 

There have been many different representations used to solve the TSP problem using 
GA [8] such as ordinal representation(Grefenstette 1985), adjacency representation 
(Grefenstette 1985), metrix representation(Fox and McMahon 1992), edge represen-
tation (Homaifar and Guan 1993), and path representation etc. The most natural rep-
resentation is path representation. For instance, path (1-3-2-6-5-4-1) can be repre-
sented as (1,3,2,6,5,4) directly. However in this representation, the individual has a 
cycle topology. The meaning of genic segment just shows the relationship between a 
node and its previous and next node, but is independent of its position in chromosome. 
Different individual, such as the four shown in the left column of Table 1, may repre-
sent the same path.  

In algorithms based on path representation, it takes much time in recognizing the 
same edges in two individuals. Thus, we propose a position representation inspired by 
adjacency representation (Grefenstette 1985). In position representation, each indi-
vidual is composed of two parts: right adjacency (RA) and left adjacency (LA), which 
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means the subsequence node and previous node of the node that represented by genic 
position (in adjacency representation individuals only have right adjacency). E.g. 
path(1-3-2-6-5-4-1)can be represented as(RA)(3 6 2 1 4 5)and(LA)(4 3 1 5 6 2) 
where the 3rd position in(RA)is 2 which means edge (3-2), and the 2nd position 
in(LA) is 3 which also means edge (3-2). 

The position representation of the four individuals is depicted in the right column 
of  Table 1.  For individuals in position representation, it only needs two operations to 
judge whether an edge in them is the same or not. E.g. the following comparison is 
used to judge whether edge (4-5) in individual 2 exists in individual 3 or not. 
if(individual2.RA[4]==individual3.RA[4] || individual2.RA[4]==individual3.LA[4]) 

It’s easy to find from Table 1 that six edges of those four individuals are all the 
same. Although position representation requires more memory, it reduces the compu-
tational work for the comparison of allele among individuals. What is more, it bene-
fits bbf-based genetic operators depicted in Section 3. 

           Table 1.  The comparison of path representation and position representation 

path representation position representation 
   position 
 
 
individual 1 2 3 4 5 6 1 2 3 4 5 6 

3 6 2 1 4 5 
1 1 3 2 6 5 4 

4 3 1 5 6 2 
4 3 1 5 6 2 2 1 4 5 6 2 3 
3 6 2 1 4 5 
3 6 2 1 4 5 3 2 6 5 4 1 3 
4 3 1 5 6 2 
4 3 1 5 6 2 4 6 2 3 1 4 5 
3 6 2 1 4 5 

2.2 Recognition function of building block 

Firstly, Simple Genetic Algorithm (SGA) is used to investigate the distribution of 
building blocks in the evolution of a GA search for Ludwig’s drilling problem 280. 
Unfortunately, the results in early stage are depressed. When the population size is set 
to 400, only 30 edges are as same as those in the optimal solution even iterate to the 
1000th generation. In order to reduce runtime, new individuals in each generation are 
optimized by 2-opt algorithm in probability Ph (that is so-called memetic algorithm). 
2-opt algorithm can eliminate path crossover effectively, but cannot guarantee to find 
optimal solution [8]. The amount of building blocks among the population in the 20th 
generation during the evolution of a search is shown in Fig. 1 (where x-axis is the 
serial number of buiding blocks, which are the edges in the optimal solution and y-
axis is the relevant appearing frequency in the population). We can see that some 
building blocks have a quite high appearing frequency at the beginning of evolution. 
Thus, it is possible to recognize building block by certain statistic methods to avoid 

Building Block Filtering Genetic Algorithm       197



useless and repeatable search for known building blocks. In order to find the relation-
ship between the amount of building blocks among individuals and the length of the 
path of individuals, we analyze these two features of individuals. The results are 
shown in Fig. 2. 

 

 
Fig. 1. Statistic of appearing frequencies for building blocks 

 
Fig. 2. Distribution of path length / build blocks in individuls 

From Fig. 2 we can see that the amounts of building blocks among individuals in 
populations are ranged from 180 to 230, and the amount of building blocks and the 
path length do not have linear relationship. The individuals that have longer path 
length may include more building blocks on the contrary. As to TSP problem, an 
individual that has a worse edge achieves a longer path length no matter how many 
good edges it has. 

Six statistic functions are designed to recognize building block from populations, 
in addition the recognizing effects are evaluated. 
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Let N be the size of population, if  be the fitness of individual (fitness function is 
ππ DNLf /5.76)( ×= ,where L means the side of the smallest square which can 

contain all the cities, N is the number of cities and πD  is the length of the path in the 

current permutation.), f  be the average of fitness, n be the amount of individuals 

whose fitness are better than f  , iE  be the set of edges in individual 
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2.3 Analysis of recognition functions 

Probabilities are calculated by recognition functions for all edges in population in the 
generations during the evolution. Those edges whose probability exceed threshold 
Pthreshold are considered as building block candidates, and let TC represents the amount 
of them. Compare building block candidates and building blocks (edges in known 
optimal solution) to find false building blocks (that are candidates who are not true 
building blocks), and let FC represents the amount of these false building blocks. 
Then, the true recognition rate is: Rate=(Tc-Fc)/Tc. 

When Pthreshold is set to 0.98,the comparison of the recognition results of function F1 
to F5 is shown in Fig. 3. 
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Fig. 3. The comparison of different functions (Pthreshold =0.98) 

By analyzing a great deal of experimental data, we found that the recognition abil-
ity of function F4 is the best, while F5 is the worst whose false rate is the highest. The 
false rate of F3 is the sub-highest, while the rest are similar. The comparison of rec-
ognition results with different thresholds of function F4 is shown in Fig. 4. 

 

 
Fig. 4. Comparison of different thresholds for F4 (Pthreshold is ranged from 0.80 to 0.99) 

From Fig. 4 we can see that when the threshold is close to 1, it is hardly to find 
building block candidates, and when the threshold is lower than 0.96, the false rate is 
rather high. 

The recognition results of function F6 are shown in Fig. 5. When b, which means 
the number of the best individuals in population, is set from 21 to 27, and the thresh-
old is 1. From Fig. 5 we can see that the smaller the number of statistic individuals is, 
the higher the false rate is. When b is set to 8 and at the 190th generation, although the 
true rate is 0.95, due to the larger number of building block candidates, the false 
building blocks are over 20. From the comparison of all mechanisms, we find that 
function F4(Pthreshold =0.98) and F6(Pthreshold =1 , b= 27) , the comparison of which is 
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shown in Fig. 6, are better than others. As a result, we take F6 (Pthreshold =1 , b= 27) as 
filtering function for that it needs less computational work. 

 

 
Fig. 5. Comparison of  F6 (Pthreshold =1) when b is set from 21 to 27 

 
Fig. 6. Comparison of F4 (Pthreshold =0.98) and F6(Pthreshold =1, b=27) 

The comparison of different functions show that statistic based method can recog-
nize building block in a high probability. But false recognition will appear no matter 
which function is used. In this case, eliminating the edges of building block candi-
dates from original problem by reduction mechanism to reduce the scale of the prob-
lem will probably cause false reduction, which will result to failure to find the opti-
mal solution. 

However, the average probability of finding building blocks by the best functions 
is 0.98. These building block candidates can be preserved during the evolution and 
make the search of GA more effective. 
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3   Building Block Filtering Genetic Algorithm (bbf-GA) 

3.1 The bbf-GA  

In order to exploit the building blocks filtered, we propose bbf-GA as following: 
Initial the parameters of GA; 
Create initial population P(t) randomly; 
Improve chromosomes by 2-opt algorithm in probability Ph; 
Evaluate P(t); 
While (not meeting the terminal condition){ 
 Calculate and abstract building block candidates from individuals of P(t); 

Implement crossover operation to P(t) in probability of Pc*(1-Pb) to get 
C1(t); 

Implement bbf-based crossover operation to P(t) in probability of Pc*Pb to 
get C2(t); 

Reproduce P(t) in probability of (1-Pc) to get C3(t); 
C(t) =C1(t)+C2(t)+C3(t); 
Implement mutation operation to C(t) in probability of Pm*(1-Pb); 
Implement bbf-based mutation operation to C(t) in probability of Pm*Pb; 

  Implement 2-opt algorithm to C(t) in probability of Ph; 
  Evaluate C(t); 
      Generate P(t+1) based on the optimum individuals in P(t) and C(t); 
  t=t+1; 
} 

In our algorithm the position representation is adopted, and each individual is rep-
resented as right adjacency (RA) and left adjacency (LA). Crossover operator adopts 
Ordered Crossover Operator[8] method proposed by Davis in 1985, which constructs 
an offspring by choosing a sub tour of one parent and preserving the relative order of 
cities of the other parent. Mutation operator adopts random multipoint mutation. The 
parameters of GA are: Pc(crossover probability), Pm(mutation probability), Ph(2-opt 
optimization probability) , N(the size of population). 

In order to filter building block candidates, the recognition function is implemented 
to algorithm. Building block candidates are also represented as right adjacency (RA) 
and left adjacency (LA), where the position of non-building block is represented as -1. 
In addition, bbf-based crossover operator and mutation operator is designed to exploit 
building block candidates. The bbf-based genetic operators are used in probability of 
Pb, while normal operators are used in 1-Pb. From later experiments we can see that 
the search will cause rapid premature convergence when Pb is big enough. Due to the 
existence of false genic segment in building block candidates, Pb shouldn’t be too big. 
When Pb is set to 0, algorithm is equal to traditional GA actually. 
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3.2  Bbf-based genetic operators 

In this paper, traditional genetic operators are mended to exploit building block can-
didates in individuals. The bbf-based crossover operator is depicted as following. 

Input: parents P1,P2; building block candidates B 
output: offspring O1 
operation: choosing edges in parent P2 that either are between random position s1 
to s2 or belong to building block candidates and the rest edges from parent P1 to 
generate offspring O1. The loss edges are generated randomly. 

 
Algorithm description: 

(1) iCount=0;  // count of passed node 
(2) O1[ ]=φ                    // path of offspring 
(3) Set edges in P2 that neither are between position s1 to s2 nor belong to building 

block candidates to -1; 
(4) iCur=rand(N);    // begin with random node 
(5) while(iCount <N){    // analyze for each gene 
(6)        if(P2.RA[iCur]!=-1){    / /P2 has right adjacency 
(7)                 iNext= P2.RA[iCur]; 
(8)                 P2.RA[iCur]=-1;  // segment can be used only once 
(9)                 P2.LA[iNext]=-1; 
(10)         } 
(11)         else if(P2.LA [iCur]!=-1){    //P2 has left adjacency 
(12)                 iNext= P2.LA[iCur]; 
(13)                 P2.LA[iCur]=-1;  //segment can be used only once 
(14)                 P2.RA[iNext]=-1; 
(15)         } 
(16)         else{      // edges that not belong to P2 are selected from P1 
(17)                 iNext= P1.RA[iCur];  // select RA first 
(18)                 if(iNext∈O1[ ] || (P2.RA [iNext]!=-1 && P2.LA[iNext]!=-1) ){ 
(19)     // next node has been used, or is the vertex of two edges in P2 
(20)       iNext= P1.LA[iCur];  // select LA then 
(21)                         if(iNext∈O1[ ] || (P2.RA[iNext]!=-1 && P2.LA[iNext]!=-1) ) 
(22)                         // next node has been used, or is the vertex of two edges in P2 
(23)                         iNext=random usable node 
(24)                } 
(25)         } 
(26)         O1[ ]+=iNext; 
(27)         iCur=iNext; 
(28) } 

The purpose of step 3 in above algorithm is to eliminate neither selected edges nor 
building block candidates in parent P2 to generate offspring O1 cooperated with 
parent P1. The starting node is generated randomly, and next node is selected from P1 
or P2 each time. To generate next node, the RA and LA (which means two edges 
representing different direction from current node) of parent P2 are selected firstly. If 
no usable node found, the RA and LA of parent P1 is used instead. If no valid node is 
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found in both P1 and P2, next node is generated randomly (in step 23). In this case, it 
is necessary to estimate whether next node is used (which may cause cycle), or is the 
vertex of two edges in P2 (which may cause the loss of an edge in P2). 

The algorithm preserves all edges that either in selected zone or belong to building 
block candidates in parent P2, as well as some edges of parent P1. From the process 
of algorithm we can see the advantage of position representation, that is, preserving 
certain edges (non-continuous edges are possible) effectively without much computa-
tional work. 

The way to mend mutation operator is simple. After generating a node that should 
be mutated randomly, the RA and LA of this node are checked whether they are be-
longing to building block candidates. If so, generate a new node to avoid losing of 
these edges. 

The bbf-based operators can preserve edges that belong to building block candi-
dates in parents and avoid damage, reform and comparison to these nodes. Thus, the 
search is focus on the rest edges, which reduce unnecessary stochastic search and 
improve search efficiency of GA. 

4   Experiment and Analysis 

In our experiments, we set parameter values as followings: population size N=400, 
number of generations=400, crossover probability Pc=0.80, mutation probability 
Pm=0.03, local optimization (2-opt algorithm) probability ph=0.3. Traditional GA 
and bbf-GA (Pb=0.35, and bbf-based genetic operators are employed after 100th gen-
eration) are implemented 100 times each and the results are shown in Table 2. 

Table 2.  Comparison of Traditional GA and bbf- GA 

  
From Table 2 we can see that the possibility of finding the optimal solution 

(2586.7696) by bbf-GA is increased remarkably, and the fluctuating of result is re-
duced. Another important data in our experiment is that a suboptimal solution 
(2587.8088) is found 48 times. We consider this as a result of that the false building 
block candidates cause convergence to suboptimal in high probability. The results 
also show that traditional GA has higher fluctuating and randomicity than bbf-GA. 
Fig. 7 is the distribution of building block candidates in one of these results (the red 
edges represent building block candidates filtered). 

Algorithm 
Times of finding 
optimal solution 

Average generations of  
finding optimal solution 

variance of solu-
tion 

Traditional 
GA 4 309 69.14505583 

bbf-GA 28 213 29.08194754 
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The bbf-GA cannot be improved by increasing Pb simply. When Pb is up to 0.85, 

the result is no better than traditional GA. By analyzing the recognizing process of 
building block candidates we can see that when Pb is big enough, building block 
candidates (including both true and false candidates) diffuse among population. It is 
clear to see from Fig. 8 that the amount of building block candidates and false candi-
dates are increased significantly as well as recognition accuracy is reduced from the 
100th generation when bbf-based genetic operators are employed. 

 

 
Fig. 8. Comparison of candidate building block recognition in evaluation process (Pb=0.85) 

 
Fig. 9.  Diversity comparison in evoluation process 

 

Fig. 7.  Distribution of building block candidates 
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By observing the individuals among population, we find that when Pb is big 
enough, the diversity of population will be destroyed, which leads to premature con-
vergence. Fig. 9 shows the comparison of the average information entropy of differ-
ent generations, where when Pb=0 (traditional GA), the diversity is the highest; when 
Pb=0.35, the diversity is decreasing slightly; When Pb=0.85, the diversity is de-
creased significantly from the 100th generation. 

5   Conclusion 

In order to reduce useless search of GA on parts that are already optimal and make 
the search more effective, a mechanism that uses statistic function to filter building 
block candidates in the evolution of GA search is proposed. By testing the recogni-
tion effect of 6 statistic functions, a bbf-GA is proposed, including the filtering of 
building blocks and the bbf-based genetic operators. The experimental results show 
that the recognition and utilization of building blocks can improve the efficiency of 
search significantly. The comparison between traditional GA and bbf-GA makes it 
clearly that local searching algorithm(2-opt) can generate a large amount of high 
quality partial solutions rapidly, as well as recognizing and preserving these partial 
solutions during the evolution of GA can take advantage of the parallel search ability 
of GA. In addition, position representation is proposed, which decreases the computa-
tional workload of bbf-GA, such as edge comparison, computation of individual 
similarity, abstraction of uniform edge, and operations in bbf-based genetic operators 
(especially for the exploitation of non-continuous edges). 
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